mtkblog

計算メモ

MENU

一体演算子の期待値

$A$体系の波動関数

\begin{align} \Phi(\boldsymbol{Z}_{1},\cdots,\boldsymbol{Z}_{A}) & = \frac{1}{\sqrt{A!}}\begin{vmatrix}\langle\boldsymbol{r}_{1}|\varphi_{1}\rangle & \cdots & \langle\boldsymbol{r}_{1}|\varphi_{A}\rangle\\ \vdots & \ddots & \vdots\\ \langle\boldsymbol{r}_{A}|\varphi_{1}\rangle & \cdots & \langle\boldsymbol{r}_{A}|\varphi_{A}\rangle\end{vmatrix}\\ & = \frac{1}{\sqrt{A!}}\det\{\varphi_{1}(\boldsymbol{r}_{1})\cdots\varphi_{A}(\boldsymbol{r}_{A})\} \end{align}

計算

一体演算子の期待値を計算する。 \begin{align} \bra{\Phi}|\sum_{i=1}^{A}\mathcal{O}_{i}|\ket{\Psi} & =\sum_{i=1}^{A}\bra{\varphi_{1}(\boldsymbol{r}_{1})\cdots\varphi_{A}(\boldsymbol{r}_{A})}|\mathcal{O}_{i}|\ket{\det\{\psi_{1}(\boldsymbol{r}_{1})\cdots\psi_{A}(\boldsymbol{r}_{A})\}}\\ & =\sum_{i=1}^{A}\bra{\varphi_{1}(\boldsymbol{r}_{1})\cdots\mathcal{O}_{i}^{\dagger}\varphi_{i}(\boldsymbol{r}_{i})\cdots\varphi_{A}(\boldsymbol{r}_{A})}|\ket{\det\{\psi_{1}(\boldsymbol{r}_{1})\cdots\psi_{A}(\boldsymbol{r}_{A})\}}\\ & =\sum_{i=1}^{A}\begin{vmatrix}\bra{\varphi_{1}}|\ket{\psi_{1}} & \cdots & \bra{\varphi_{1}}|\ket{\psi_{A}}\\ \vdots & & \vdots\\ \bra{\varphi_{i}}|\mathcal{O}|\ket{\psi_{1}} & \cdots & \bra{\varphi_{i}}|\mathcal{O}|\ket{\psi_{A}}\\ \vdots & & \vdots\\ \bra{\varphi_{A}}|\ket{\psi_{1}} & \cdots & \bra{\varphi_{A}}|\ket{\psi_{A}} \end{vmatrix}\\ & =\sum_{i=1}^{A}\sum_{j=1}^{A}\bra{\varphi_{i}}|\mathcal{O}|\ket{\psi_{j}}\Delta_{ij}\\ & =\sum_{ij=1}^{A}\bra{\varphi_{i}}|\mathcal{O}|\ket{\psi_{j}}(\det B)B_{ji}^{-1}\\ & =\boxed{\bra{\Phi}|\ket{\Psi}\sum_{ij=1}^{A}\bra{\varphi_{i}}|\mathcal{O}|\ket{\psi_{j}}B_{ji}^{-1}} \end{align}

一般に、行列$B$は以下の性質をもつことに注意。$\Delta_{ij}$は$(i,j)$成分の余因子。 \begin{align} |B| & =\sum_{j}B_{ij}\Delta_{ij}\\ \Delta_{ij} & =B_{ji}^{-1}|B| \end{align}

参考文献